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Abstract: This paper derives and analyzes an explicit closed-form formula for the optimal k in k-
out-of-n systems consisting of i..d. components. The system can be in one of two possible modes with a
pre-specified probabliity. The components are subject to fallure in each of the two modes. The costs of
the two kinds of system fakures are generally not identical. Since the formula is explicit, it permits a calcu-
lation of the optimal k directly in terms of the paramaters of the system. In addition, it yields many resuits
concerning both the bounds of the optimal k and the effects of a change in parameters on the optimal
k and on the optimized value of the system's expected profit.

I. INTRODUCTION

This paper studies the design of optimal systems using unreliable components. The system under
consideration consists of n Identical and statistically independent components. The system can be, with
a pre-spacifiad probability, in one of two possible modes: mode 1, In which the components are command-
ed to close; or mode 2, in which the components are commanded to open. A component is subject to
failure in sach mode: in mode 1 It may fall to close, and In mode 2 It may fak to open. The system is closed
if k or more components are closed; otherwisae it is open. Thus, the twe types of potential fallures of the
system are: faliure to close (which occurs f fewer than k components close when the system is In
mode 1), and fakure to open (which oceurs f k or more componants closa when the system is in mode 2).
These two kinds of system faliures can have different costs. Our objective, then, Is to study the optimal k ,
referred 10 as k* , treating other features of the system as parameters. The criterion for choosing k* s
the maximization of the system’s expected profit.

The contribution of this paper is as follows. We derive and analyze an explicit closed-form formula
for k*. Using this formula, k* can be calculated directly in terms of the parameters. in addltion, this
formula yields a number of results conceming the properties of k*; for example, we determine the bounds
of k*, and the direction and magnhude of change in k* due to a change in paramstars. Wae also present
some results on the impact of a change In parameters on the optimized valus of the system’s expected
profit. All of these results are exact; they do not require any approximations.

A brief background to the problem studied in this paper is as follows. |n a recent paper, Sah and
Stigitz (1988a) presented an /mplict characterization of k* for a similar system. (Since this characterization
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is Implich, It does not permit a direct calculation of k* in terms of the parameters, as the formula reported
in the present paper does.) They analyzed k* using this implictt characterization and the following two
approximations: (i) the derivatives of the binomial probabllity density are approximated by the derivatives
of the normal probability density, and (i) k, n, and k* are treated as continuous rather than integer
variables. This approach did not permit them to obtain most of the results (concarning the bounds of k*
and the effects of & change in parameters on k* ) reported in the present paper, while the results that
they dki obtain were subject to the approximations just noted. Another set of effects studied In the present
paper (namely, the effects of a change in parameters on the optimized value of the system’s expected profit)
Is not examined In Sah and Stigltz, nor, to our knowledge, has it been eisewhere in the Iiterature.

A special case of the problem studled here is ong In which It s assumed that: (iy the costs of the
two kinds of system fakures are identical, and (il} the system is In the two modes with equal probability. In
this case, the maximization of the system’s expected profit is the same as the maximization of the system's
reliabiiity, where the latter Is defined as the probability of the system's success inmode 1 minus the probabll-
ity of the system's fallure in mode 2. This special case has been analyzed by Ben-Dov (1980), and its
variants have been eéxamined by Ansell and Bendell (1982), and Phillips (1980}. These authors also provide
eariler citations.

Systems of the type studied in the present paper are of practical Importance in engineering contexts
such as relay circults and monttoring safety systems (see Barlow and Proschan (1581). Ban-Dov {1580) and
references therein). The analysls of such systems Is also useful in studying the performance and design of
human organizations such as committees and hierarchies (see Sah and Stigliz (1988b)). For axample, con-
sider a committee with n members that accepts & project (or an klea} if k of more members accept It
If there are two types of projects (good and bad) and if each member's Judgment is faliible conceming
both types of projects, then some aspects of this committee's performance can be modeled along the lines
of the system studied in this paper.

The formula for k* Is derived In Section Il. Section Ill presents the bounds of k* . Saction IV
described the results conceming the effects of a change in paramsters on k* . Section V analysis the
effects of & change In paramaters on the optimized value of the system's expected profit.

Il. THE FORMULA FOR THE OPTIMAL k

Let g, denote the probabillity of a component’s fallure when the systern is In mods 1; that Is, failure
to close. Let g, dencte the probabllity of a component's fallure when the system Is in mode 2; that is, fail-
ure to open. Assumethat 1 > g >0, for | = 1 and 2. Define b(, n, q) = [T]cﬂn -q)™ tobethe
density of a binomial variate with parameters (n, q) . Define the corresponding cumulative density
Bk, n.g)= ):f_ 0 b{, n, q) . Recalling the verbal definition of the system, then, the system's probabiity of
failure In mode 1 Is Bk - 1, n, 1-q,}. In mode 2, the system’s probabllity of failure is 1 - Bk=1,1n,qy) .
#t might be noted here that If one were to use the terminciogy employed by me {EEE Transactions on
Rellabiilty, then our system would be k-out-of-n:G in mode 1, and k-out-ol-n:F in mode 2.

Let o denote the probabillty the system will be In mode 1; assume 1 > a > 0. Let »' and "~
respectively denote the gain from the system's succaess and failure in mode t. For moda 2, the correspond-
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ing gains are denoted by x* and x*. A negative vaiue of a o signifies a loss. We assume that x> x?

and «° > «*.
The expected profit of the system is
Dmafr'{1-Bk=-1,n1-g,)} + xBk-1,n,1-q,)]

+ (1=a)[x®Blk=1,n,gy) + x*{1 ~Bk=1,n,q)} . 4]
Maximizing this expected profit with respect to & Is the same as maximizing
Y(k) = -B{k-1,n,1-q,} + 8Bk -1,nqy), (2)
where we have defined a summary parameter 8 (1 — a)(r> - n*)/a(z' — x°) . From above, 8 > 0. The
affects of the parameters {a, x', x%. #°, x*} on g are easily ascortained: 3p/da < 0, 38/dx' < 0,
3p/ox® > 0, 38/an° > 0, and 36/3x* < 0. The feasible values of k ninfromOto n.

A special case of the above formulation I8 one in which It is assumed that the gain from the system’s
success In either mode Is zero (Le., x' = 2% = 0), the gains from the system’s fallure is the same in the
two modes (le.. =2 = x*), and the system is in the two modes with equal probablity (Le., a = 1/2) .
Since A = 1 in this special case, the maximization of (2) is the same as maximizing the system’s rellability,
defined as {1 - Bk — 1,n, 1 =q)} = {1 =Bk = 1, n, ,)} . As was noted sarlier, this case has been
examined in the literature. The resuits comresponding to this special case can be sasily identified in the more
general analysls below.

Unless stated otherwise, we shall assume throughout that 1 — g, > q, . (Systems that do not sat-
isty this condition are discussed at the end of this section.) WUsing this assumption, it Is shown in the
Appendix that:

The optimal value of k s either unique, or there are two neighboring
values of k that are both optimal. @

If the optimal value of k is unique, we dencte it as k* . If two values of k are optimal, we dencte
them as k* and k* + 1. Now, consider those cases in which k* isinterior; thatls, n—1zk"=1.

Given (3), k* must satisty:
Y{k*) - Y(k* + 1)20, and Y(k*) -Y{k*=1)>0. 4)

For notational brevity, define t= {1 - q,)/q, and r=q,/(1 - q;) . Aiso, define

Km (5)

£nit/n
Note that t/r > 1, because t > 1 and r < 1. Then, by substituting (2} and the definition of B Into (4},

the expressions in (4) can be restated as
k*z K, and K> k*=t. (8)
Define [K], to be the smallest integer equal to or larger than K. Then, {4) and (6) yield

THEQREM 1
k* = (K], , where K /s given by (5). &
This closed-form formula permits a simple calculation of the optimal k directly in terms of the par-
ameters. Also, it Is easlly vertfied from (4), (6), and (7) that: () K K Is not an integer, then the optimal
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value of k s unique, and (i) if K Is an integer, then the optimal values of k ate k* and k* + 1, where
k* = K. Moreover, necessary and sufficient conditions for a comer value of k to be optimal can also be
derived from (2), the definition of B, and expressions (A3) and (A4) presentad in the Appendix. These con-
ditions are: () k = 0 is optimal if and only #f Y(0) = Y(1), or aquivalently, f and only if 8= ™ ; and (i)
k = n is optimal ¥ and only  Y(n) = Y(n - 1) . or equivalently, If and only i ,azn"" .

The analysis below uses the following Inaquallties, all of which follow immediately from the definitions
of the terms involved.

¢nt>0, &nr<0, and &n(t/r) > 0. (8)
entr>0 g la. EnploW ALY, ©

For later use, it is established In the Appendix that

1—q1>-ﬁ%5—r‘)->qz. (10}
Also for later usa, the following Is obtained from (8) and (9):
- _1__14pu - <
enit/y 2 2enit/n) < Q.9 an

Finally, note that the assumption 1 - g, > q, may appear arbitrary, but it has often been the only
case treated in the Iterature, thus negecting the analysls of systems which do not satisfy this assumption
{see, for example, Ben-Dov (1980) and Sah and Stiglitz (1968a}). A complete analysis is as follows. First,
consider the case In which 1 - g, = q,. Then from (2), Y(k) = (8- 1)B{k ~ 1, n,q,) . Since B Is strictly
increasing In k, it followsthat: () k = O isoptimalif g <1, (i) k = n isoptimal if 8> 1, and (i) any
value of k isoptimai ¥ g = 1. Next, consider the case in which § —q; < gy We show in the Appendix

that:
#1=-q,<4q,, then only the two polar values of k can be optimal.
k =0 Isoptimalif B < {1-(1-q,)"}/(1-qy. k=n isoptimal otherwise. (12)

Hl. BOUNDS OF THE OPTIMAL k
Expressions {5), (8}, (8) and {10) yield

THEOREM 2
M k*>nq, f 1. (13)
M k*<nit-g)+1 1 gs1. (14)

This theoram establishes bounds on the value of k* . conditioned solely upon the value of 5. A
different set of bounds on k* , conditioned upon the value of 3 as well as on the relative values of q,
and g, le obtained from (5), (6), (8) and (11):

(l)k*>'—2"ll,8>1 and q,=q,. (i) k*<g+1 f g<1ad quzq;.

(iily k'-%forodd n, and k‘zgorg+1 foreven n,if #=1and q,=4q,. (15)
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Iv. THE EFFECTS OF A CHANGE {N PARAMETERS ON THE OFTIMAL k

The closed-form formula for k* given in (5) and (7) permits a comprehensive assessment of how
k* changes H the parameters {n, 4, q,, g,} change. Below, we assess the effacts of a change In thesa
parameters on K . The corresponding effects on k* are obtalned by a simple reinterpretation. For
instance, let § denote a parameter and let the function K(#) denote the corresponding value of K. If we
show that the change in K(#) due to a change In # is positive (negative), then it follows that this change
in # does not decrease (Increase) k* . It is assumed below that K Is interior.

Theorem 3 presents the effects of a change in n on K. Theorem 4 presents the effects of
changes in q, and q,. The proofs of these theorems are given in the Appendix. The effect of a change
in 8 on K is straightforward to assess. From (5) and (8), aK/38 > 0.

Note that, in Theorem 3, aK(n) = K(n + 1) - K{(n} denotes the change in K due to a unit change

in n, whereas A[@] -Lg%]—)— 5—(53! denotes the change in the ratio K/n due to a unit change In
n.
THEOREM 3
M 1-q,> 8K > q,. (18)
) aK(}Z 3. a5 q,. (47
iy a[@]:o, 81, (18)

Expression (16) provides an unconditional bound on the value of AK . Expression {17) shows that
whether AK s larger or smaller than one-half depends on whether g, is smaller or iarger than q, .
Expression (18) shows that the ratio K/n Is increasing or decreasing in n depending on whether 8 is

smaller or larger than one.

THEOREM 4
3K
(l)-‘,@-c.o,nﬁsy (19)
L 3K
(|I)a—q2>0‘"ﬁ21. (20)
@ >0, 4 821, where quq, = 1)
aq <2 <1 qwqg,=4q,.

Expressions (19) and (20} show how q, and q, affect K, within certain ranges of 8. These
results do not depend on the values of q, and g, . Expression (21) deals with the spaclal case in which

a component has the same probability of fallure In the two modes; that is, d; = q, . [n this case, a higher

probability of component failure raises or lowers K depending on whether g Is larger or smailer than one.

It might be useful to contrast this analysis briefly with that of Sah and Stiglitz (1988a). Their method

wastotreat k, n and k* as continuous variables, and replace (4) by its continuous counterpart, in which

k* |s characterized by ﬂa(-::—’l = 0. A perturbation of this equality with respect to a paramater ¢

ak* a%v(k, ) , a®v(k )
ylelds a7 = - “Flar /T od

the preceding expression was cafrled out by approximating the dertvatives (with respect to k and the par-

, where the right-hand side is evaluated at k* . Their evaluation of

ameters) of the binomiat density b by the corresponding derivatives of a normal density. With this method,
they derived (15), (17}, (21), but not (7}, (12}, (13), (14}, (16}, (18), (19), and (20), nor the results presented

beiow.
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V. THE EFFECTS OF A CHANGE IN PARAMETERS ON THE QPTIMIZED VALUE
OF THE SYSTEM'S EXPECTED PROFIT

The method we employ to evaluate these effects is as follows. If ¢ denotes a parameter, then let
the function k*(#)} represent the optimal value of k. Fora given § , tha optimized value of the system's
expacted profit |s represented as G(¢) = 1I(k*(#), 4}, where the function Il is described by the right-hand
side of (1). Now, suppose that the value of the parameter is changed from # to §'. Then, the definition
of the optimum implies that G{8") = IT(k*(¢"}, #") = TI(k*(8), ) . Recallingthat G(s) = TI(k*(4), 8}, it follows
that

G(8") > G(F) ¥ N{k*(8), 8" > M(K*{6}. 8) , and
G(8") = G(8) i TI(k*(9), ") = I(k*(8), 8) . (22)

Wae also employ the following resuits:

3‘% Bk, n, ) = —nb(k, n - 1, G) . (23)
Bk.nq)-Blkn-1,q) = gbk, n~1,q) . (24)

A convenient source for these resulls is Feller (1968, p. 173). (Expressions (23) and (24}, respectively, follow
directly from expressions {10.9) and (10.7) in this book.)

One would expect G to be higher f either of the probabilities of a component's failure, q, or g,
is lower. To confirm this, note that, from (1) and (23), 411/3q, < 0 for i = 1 and 2. Thus, from (22), G(q)
is higher if q, is lower. It can similarly be shown that G Is higher if any one of the system gains (repre-
sentad by ! , x* . 2 and «* } is higher.

Next, consider the effect of a change In a (which, it will be recalled, is the probability that the
system will be in mode 1). Assumethat x° = x' and =* = x2; thatis, the gain from system success
in the two modes is identical, and the gain from system failure In the two modes is identical. Then, (1)
yleids oll/8a = (x' - rz)[1 -Bk-1,n1-q)-Bk-1,n, qy)] . Intum, using 1-q, > q,. n' > n?
and (23), we obtain: 3/3a > O

Bk -1, n, gl x1/2. (25)
We can now ascertain the range of k for which (25) is satisfled. If k*{a) falls within this range, then, from

(22), It follows that anincrease In o raises G. Assumingthat n= 2, It is shown In the Appendix that

sufficient conditions for (25) are
() ksqan+1) it q,=<1/2; and
() ks(n+1)/2 # gy21/2. (26)
Thus, for instance, f g, > 1/2 and k*{a) < (n + 1)/2, then 3G(a)/da > O,
Finally, consider a change In n . It is shown in the Appendix that
Ok, = 1) 2 0k, m) # Y(k + 1) 3 Y(Kk . (27)

Now, consider the case In which there are two optimal values of k, denoted by k*(n} and k*(n) + 1,
at the current value of n . Then, from (4), Y(k*(n) = Y(k*(n) + 1) . In turn, (27) yvields
{k*(n), n = 1} = D(k*{n}, n) . Therefore, from (22), G{n - 1) =z G(n) . Thatis, G cannot decrease if n

Is lowered.
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APPENDIX

Derivation of Expression (3). Define é(k) = {a,/(1 - q2)}"{(1 -q)( - qzj/chqz}“" . Sinca
1-0q, > qp, i follows that (1 - q,){1 - q5)/q,9, > 1. Thus,

Sk + 1) > ¢{k) . (A1)
Next, by substituting the definition of B into {2), it can be shown that

Y(k} = Y(k~1) 20 Fandonlyf 87 é(k . (A2)
We now show that:

Y -Yk—1)>0 B Yk + ) =Y} =0. (A3)

Yk + 1) =Yk <0 K Yk -Y(k=-1)50. (Ad)

To prove (A3), note from (A2) that Y(k + 1) - Y(k) = 0 impllas that g8z g(k + 1) . In turn, using (A1),
B > ¢(K} . Given (A2), this implies (A3), The proof of (Ad} Is analogous.

Let k* denote an optimal value of k. Thatis, Y(k*) = Y{k} for k = 0 to n. Sihce Y(k*)
ZY{k* - 1), Itfoliows from (A3) that Y{(k*) > Y(k) # k < k* — 1. Similarly, since Y(k*)= Y(k* + 1},
it follows from (A4) that Y(k*) > Y(k) if k > k* + 1. Thus, a value of k smaller than k* -1 or larger
than k* + 1 cannot be optimal. Now, suppose k* + 1 s also an optimal value of k; thatis, Y(k*}
= Y(k* + 1}. Then, k" -1 cannot be an optimal value of k becauss, from (A3), Y(k*) > Y(k* - 1) . This
compietes the derivation of (3).

Derivation of Expression (10). From the definitions of the terms involved,

C Cy

and énr

1
TR en/n " %2 % Tnin s)

_&nr. -
en(t/r) v -qy)

whare ¢, = (1 ~g,)&nt + g, €nr, and Cymq; €nt + (1 - qg,)&nr. Define a random variable 2 having
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value 1/t with probability (1 -q,), and value 1/r with probability q, . It E is the expectation operator,
then E{z}) =1, £nE(z) =0, and E(8n2) = —c, . Since £&n 2z Is strictly concave in z, Jensen's
inequality (see Feller {1966, p. 151}) implies: €n E(z) > E(€n2). Thus, ¢, > 0. This result, along with
(8) and the first part of (A5), yields the first half of inequality (10). The second hatf of (10} Is proved analiog-
ously, by defining a random variable z' having valus t with probability g, . and value r with probability
{1 -qy.

Derivation of Expression (12). Note that (A2} continues to hold In the present case, but since

1-qg, <q,. we have
¢k} > gk + 1), (A6)
instead of {A1). Now, suppose for a moment that an Interior value of k is optimal. That is,
Yk*)2Y(k for k=0 to n, where n-1zk*=1. (A7)

From (A7), Y{k*) = Y{(k* — 1} . (A2) thus vields 8= ¢(k*). Inturn, from (A6), £ > ¢(k) ¥ k > k*. Thus,
using (A2) we can show that k = n is optimal, which contradicts (A7). Analogously, it can be shown that
(A7) implles that k = 0 is optimal, which, in turn, contradicts (A7). Thus, k* =0 or n. Further, k* = n
if Y(n) > Y{0), and k* = 0 otherwise. Now, Y{0) = O because, by definition, B(k—~ 1, n,g) =0 K
k= 0. Thus, (12) follows by substituting the definition of B inta Y{(n) .

Proof of Theorem 3. (16) foliows from (5) and (10). (17) follows from (5) and (11). To obtain (18),

note from (5) that A[@] = ~£n g/n(n + 1}en(t/r) . Then, using {8) and (9), (18) follows.
Proof of Theorem 4. For notational brevity, define e = q{1 - g)£n(t/r) . Then, {5} yields

5K K
=" {K-n{1 - q,)}/e, and 7, " (K - ng,)/e, . (AB)
Next, note that, from (5) and (10}, K< n{1 —g,) i #=<1, and K> nq, # g=1. Thus, (19) and (20)

;K _ 3K, 5K

foliow from (A8). To obtain (21), note that ¥ qw q, = q,, then e, = e,, and il T + 3, Thus,
) 2
from (AB): %‘ = (2K - nj/e, . Further, (5) and (11) imply that K > n/2 if 8% 1. Thus, (21) follows.

Derivation of Expression (28). For nz 2, a result noted in Johnson and Kotz (1968, p. 53) Is:
Bk, n (k+ 0)/(n+1))s1/2, f (n=-1)/2zkz0. Thus, Bk-1,n, k/(n + 1}}s1/2 if (n+1}/22k
z 1. Now, from (23), B(k - 1, n, g,) Is decreasing in g, . Also by definition, Bk—-1.nq) =0 K
k = 0. Thus, it follows that: Blk=1,n,q,) <1/2 # g,=2k/(n + 1) andif (n + 1}/22 k. Inturn, (26)
follows,

Derlvation of Expression (27). Using (1) anct (24), TI(k, n— 1) = {k, n) = g{# = (1 —q,)blk - 1,
n=-11-q,)/gbk -1, n-1,4q,}, where g isa positive number. This can be reexpressed as
Ik, n— 1) - I{k, N} = g{B — #(k + 1)} . From {(A2), in turn, (27} follows.




